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Abstract

In Model-Driven Engineering (MDE), metamodels and domain-specific languages are key artifacts as
they are used to define syntax and static semantics of domain models. However, metamodels are evolving
over time, requiring existing domain models to be co-evolved. Though approaches have been proposed for
performing such co-evolution automatically, those approaches typically support only specific metamodel
changes. In this paper, we present a vision of co-evolution between metamodels and models through con-
sistent change propagation. The approach addresses co-evolution issues without being limited to specific
metamodels or evolution scenarios. It relies on incremental management of metamodel-based constraints
that are used to detect co-evolution failures (i.e., inconsistencies between metamodel and model). After
failure detection, the approach automatically generates suggestions for correction (i.e., repairs for inconsis-
tencies). A case study with the UML metamodel and 23 UML models shows that the approach is technically
feasible and also scalable.
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1. Introduction

In Model-Driven Development (MDD) (Schmidt,
2006), metamodels are key artifacts that represent
real-world domains. They define the language of
models; that is, the different elements available for
modeling along with their interdependencies. Meta-
models also impose structural and semantic con-
straints on models (France and Rumpe, 2007). Al-
though metamodels are often perceived as static
artifacts that ought not change, it has been shown
that the opposite is the case: metamodels do evolve
over time (Di Ruscio et al., 2012; Herrmannsdoer-
fer et al., 2009b). There are a variety of reasons for
this (Di Ruscio et al., 2011). For instance, meta-
models often reflect domain models which are in-
herently volatile and today there is a trend for flex-
ible design tools with adaptable metamodels that

∗Corresponding author. Tel.:+43 732 2468-4389.
Email addresses: andreas.demuth@jku.at (Andreas

Demuth), markus.riedl@jku.at (Markus
Riedl-Ehrenleitner), roberto.lopez@jku.at (Roberto E.
Lopez-Herrejon), alexander.egyed@jku.at (Alexander
Egyed)

can be tailored to different domains (e.g., Manders
et al., 2006). Indeed, there is even the FlexiTools
workshop series dedicated to exploring such tools.
Other common sources for metamodel evolution are
refactorings that focus on improving a metamodel’s
structure and usability or the continuous evolution
of tools and their languages (Di Ruscio et al., 2012).

Co-evolution of models denotes the process of
adapting models as a consequence of metamodel
evolution (Mens et al., 2005; Rose et al., 2009).
This is a nontrivial process, and incorrect co-
evolution may cause models to no longer comply
with their metamodels. Several incremental ap-
proaches have been proposed to support this pro-
cess (e.g., Herrmannsdoerfer et al., 2009a)). Un-
fortunately, proposed solutions are typically lim-
ited to specific metamodels or do not fully sup-
port all kinds of possible changes (e.g., restriction
of metaproperty) (Cicchetti et al., 2008). In partic-
ular, existing generic approaches do not take into
account domain-specific model constraints. Thus,
they might produce results that are conforming to
the updated metamodel but that are not valid (or
intended) in the specific modeling context. There-
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fore, co-evolution of metamodels and models re-
mains an open issue.

In this paper, we outline a generic approach
that does not try to automate co-evolution in gen-
eral, but that detects co-evolution failures and sug-
gests model adaptations to co-evolve a model cor-
rectly. Specifically, our approach does not fo-
cus only on traditional model conformance, but
it also takes into consideration additional domain-
or even project-specific constraints (environment-
based constraints). The approach relies on incre-
mental constraint management that allows for ef-
ficient detection of co-evolution failures (including
the absence of co-evolution). If such failures are de-
tected, the resulting inconsistencies between meta-
model and model – along with all design constraints
imposed on the model – are used for finding suit-
able model adaptations (repairs). These repairs
establish conformance of the model with the up-
dated metamodel by removing any constraint vio-
lations. Moreover, repairs also take into considera-
tion environment-based constraints to ensure that
the repair leads to a model that is also valid with
respect to the specific modeling context (i.e., it
does not violate any metamodel- or environment-
based constraints). This use of additional informa-
tion and the resulting validity of co-evolved mod-
els presents a major qualitative benefit over exist-
ing approaches. The proposed approach follows the
principles of consistent change propagation (CCP),
a change propagation (Hassan and Holt, 2004) pro-
cess which is driven by arising inconsistencies. It
does not, in contrast to other change propagation
processes, try to maintain consistency automati-
cally by using on heuristics or transformation rules
(e.g., Eramo et al., 2012).

This paper is an extended version of previous
work (i.e., Demuth et al., 2013a,c). Additional con-
tributions include a more detailed description of the
concepts of CCP in general and its application in
different metamodel evolution scenarios in particu-
lar, an in-depth analysis of the feasibility and the
scalability of the approach, especially of the con-
straint management part, using a new prototype
implementation that does support a broader vari-
ety of metamodels and models compared to Demuth
et al. (2013c), and a more comprehensive and ex-
tensive discussion of related work.

The remainder of the paper is organized as fol-
lows. In Section 2 we introduce a motivating exam-
ple that is used throughout the paper to illustrate
our approach and to highlight differences to exist-

Figure 1: Metametamodel.

ing approaches. In Section 3, we give an overview
of state-of-the-art approaches for metamodel-to-
model co-evolution and discuss the key aspects of
consistent change propagation in general. More-
over, we discuss how the general concept of CCP
is tailored to the problem of metamodel-to-model
co-evolution. In Section 4 and Section 5, we respec-
tively present in detail how our approach manages
constraints incrementally and generates possible re-
pairs. In Section 6 we present a case study with the
Unified Modeling Language (UML) (Object Man-
agement Group, 2013b) metamodel and industrial
UML models and that was used to validate our ap-
proach. We discuss the developed prototype imple-
mentation and present scalability results. In Sec-
tion 7, we further analyze those results, the general
applicability of our approach, and possible threats
to validity. Related work is discussed in Section 8
and in Section 9 we conclude the paper and briefly
describe future research paths on the topic.

2. Motivating example

Let us now present a motivating example which
we will use throughout the paper to illustrate our
work. We begin with a description of the meta-
model.

2.1. (Meta)Metamodel

To illustrate our work, we use a minimalistic
metametamodel, as shown in Fig. 1, to define a
metamodel for component-oriented systems with
high availability requirements, as shown in Fig. 2.
The metametamodel we use in our example con-
tains three kinds of elements that are available
for building metamodels: Class, Reference, and
DerivedReference. Instances of all three ele-
ments must provide the attribute name. Instances
of Reference must provide a minimum (min)
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Figure 2: Metamodel.

Figure 3: Model.

and maximum (max) number of referenced classes.
Moreover, each reference must specify an owner

class as well as a target class. Derived references
are used to aggregate navigation results obtained
by other references. Thus, a DerivedReference

must specify at least one Reference for which it
aggregates the results (with the reference refs).

The metametamodel was used to construct a
metamodel, as shown in Fig. 2, that defines three
classes: Component, Domain, and Communication.
Components can have an arbitrary number of sub-
components and must belong to a Domain. Do-
mains include components that are responsible for
fulfilling a common task in the system. Commu-
nications occur between a sender and either one
or two receiver (rec) components. To increase
the change of a successful communication, differ-
ent components can be specified as primary (prim)
and a alternative (alt) target of a communication.
All possible targets of a communication (i.e., the
components reached through the references prim

and alt) are aggregated by the derived reference
possibleReceivers.

Figure 4: Updated metamodel.

2.2. Sample model

In Fig. 3, a model that complies with the
metamodel is depicted. The derived reference
possibleReceivers is omitted for readability rea-
sons. The model contains three domains: X, Y ,
and Z. Domain X consists of only two components
(X1 and X2), Y consists of four components in to-
tal (Y 1 – Y 4), and Z consists of two components
(Z1 and Z2). The model also contains two commu-
nications (C1 and C2), drawn as circles.

2.3. Metamodel evolution

Let us now consider a simple metamodel evolu-
tion. To increase the availability of systems and re-
duce the chance of communication failures, a second
alternative communication target (called alt2) is
added to the metamodel, as shown in Fig. 4. More-
over, a communication can now have up to two re-
ceiver components at the same time, indicated by
the change of the cardinality of rec from 1..2 to 2.
Finally, the derived reference possibleReceivers

is updated to include the results obtained through
the new reference alt2. The places of evolution
are encircled in Fig. 4. Intuitively, this metamodel
evolution, specifically the addition of alt2 and cor-
responding change of possibleReceivers, requires
the model in Fig. 3 to be co-evolved as the refer-
ence alt2 is mandatory and it is owned by class
Communication which is instantiated twice in the
model. Moreover, the cardinality of the reference
rec has been narrowed to a single value. However,
as we will show below, finding suitable adaptations,
even for such a small metamodel evolution, is a
challenging task that is far from trivial.

In the next section, we will illustrate how exist-
ing co-evolution approaches handle this evolution
scenario and describe how our proposed approach
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Figure 5: Traditional co-evolution approach.

of co-evolution through consistent change propaga-
tion tackles this problem.

3. Co-evolution through consistent change
propagation

To the metamodel evolution scenario presented
above, we propose to perform co-evolution through
consistent change propagation. However, before we
discuss different aspects of our approach in detail,
let us first illustrate how co-evolution is typically
handled by existing approaches. Then, we provide
an overview of the key concepts involved in consis-
tent change propagation and discuss the key differ-
ences between our approach and existing ones.

3.1. Traditional co-evolution approaches

Since co-evolution of metamodels and models is
an important issue, various approaches have been
proposed. Basically, there are two major strategies
for tackling the issue: i) metamodel-change-based
model adaptation and ii) strategy-based model mi-
gration. Approaches of the former kind (e.g., Ci-
cchetti et al., 2008, 2009; Wimmer et al., 2010;
Wachsmuth, 2007) typically consider metamodel
changes and, based on a set of rules, derive corre-
sponding model changes that are executed to trans-
form a model that conformed to the old metamodel
to a model that conforms to the new version of
the metamodel (e.g., Eramo et al., 2012). This
general approach is visualized in Fig. 5 where the
changes (depicted by ∆MM ) between the original
and updated versions of a metamodel (i.e., MM
and MM ′) are translated to changes (denoted by
∆M ) that transform the original model M that con-
forms to MM to an updated version M ′ that con-
forms to MM ′. Typically, traditional co-evolution
approach – at least try to – automate the genera-
tion and execution of model changes.

Figure 6: Issue arising with traditional co-evolution ap-
proaches.

Even though those approaches produce updated
models that conform to the updated metamodel,
some issues remain unsolved. First, model adapta-
tions are typically built using translation rules that
map specific metamodel changes to corresponding
target model changes. Indeed, it has been shown
that this leads to conforming models (e.g., Cicchetti
et al., 2008, 2009; Eramo et al., 2012). However,
such translation rules do produce a single model
adaptation although there might a large – probably
even infinite – number of possible adaptations that
lead to conforming updated models, as illustrated
in Fig. 6 where the dashed arrows indicate valid
but ignored alternative model adaptations (∆M1 –
∆Mn) that would lead to other conforming models
(M ′2 – M ′n). When applied to complex models, it
is thus likely that such fully automated approaches
produce a correct, yet undesired solution.

Approaches of the second kind do not base model
adaptations on the performed metamodel changes,
but instead they rely on user-defined model migra-
tion strategies (e.g., Rose et al., 2010b,a; Sprinkle
and Karsai, 2004; Narayanan et al., 2009; Jakumeit
et al., 2010). These migration strategies (or model
transformations) can indeed be tailored to spe-
cific domain and even individual projects. How-
ever, while it is of course possible that migra-
tion strategies are written in a way that produce
not only conforming but actually valid updated
models, this requires the migration strategy au-
thor to be aware of all desired model character-
istics (i.e., all metamodel- and environment-based
constraints). However, this is an unrealistic as-
sumption as environment-based constraints may be
of high complexity. Moreover, the desired overall
characteristics of models is often a composition of
hundreds of constraints which may be aggregated
from diverse sources. Therefore, writing migra-
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Figure 7: Consistent change propagation.

tion strategies manually always imposes a high risk
of producing unintended and thus invalid results.
Furthermore, a migration strategy is a traditional
model transformation whose support for handling
specific characteristics of the transformed model is
rather limited (i.e., the migration rules transform
all model elements of certain type uniformly accord-
ing to the specification; there is little to no consider-
ation of the context in which the transformed model
element is used). Thus, using migration-strategies
imposes the chance of taking premature design de-
cisions and not using information available at mi-
gration time.

3.2. Principles of consistent change propagation

Consistent change propagation (CCP) is an ap-
proach that keeps development artifacts, such as
design models for example, consistent during evo-
lution. To achieve this, CCP relies on consistency
rules (also called constraints) that define invariants
between artifacts, that is, conditions that must hold
in order to identify them as consistent. The overall
goal of CCP is to guide developers through neces-
sary adaptations after individual parts of a system
have been evolved.

CCP is a generic, three-step evolution handling
process that is illustrated in Fig. 7.

3.2.1. Step 1

In the first step, CCP determines the new consis-
tency status of artifacts after evolution based on a
set of constraints and existing consistency checking
technologies (constraints and consistency checker

are not depicted in Fig. 7). Note that in Fig. 7 an
evolution of the artifact A (denoted by ∆) causes
an inconsistency between A′ (the updated version of
A) and artifact B. Thus, the first step constitutes a
typical change impact analysis (Iovino et al., 2012).
However, note that neither the performed change it-
self nor the information about the changed element
(e.g., its type) is used for reasoning, but the actual
effect of the performed change is analyzed using ex-
isting constraints. Thus, our approach by default
supports any kind of metamodel adaptation.

3.2.2. Step 2

In the second step, CCP determines how artifacts
can be adapted in order to remove inconsistencies
(i.e., it derives possible repairs). This is done by
a repair mechanism that takes into account the in-
volved artifacts as well as all existing constraints.
As shown in Fig. 7, possible repairs (depicted with
dashed arrows) may adapt a single artifact (e.g., B
could be evolved to B′), as shown in the bottom-left
and bottom-right parts of Fig. 7, or multiple arti-
facts (e.g., A′ could be evolved to A′′ and B could
be evolved to B′), as shown in the bottom-center
part of Fig. 7. For each of those categories, there
might be a large number of possible adaptations, as
indicated by the respective subscripts in Fig. 7.

3.2.3. Step 3

In the third and final step, inconsistency informa-
tion and possible repairs are presented to artifact
developers (e.g., designers) who can then select the
most appropriate solution. In contrast to the first
two steps (i.e., inconsistency detection and repair
option generation) which are performed automati-
cally, this step of repair execution usually require
manual intervention.

3.3. Consistent propagation of metamodel changes

As discussed above, consistent change propaga-
tion focuses on maintaining consistency between
artifacts. This of course includes consistency be-
tween the artifacts metamodel and model (i.e., con-
formance). In this and the following sections, we
will not only illustrate how the use of CCP for han-
dling metamodel evolution addresses the issue of
unintended model adaptations we discussed above,
but we will also discuss how using CCP can im-
prove the quality of found solutions by taking into
account other factors that are generally ignored by
other co-evolution approaches (e.g., Cicchetti et al.,
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Figure 8: Co-Evolution through Consistent Change Propa-
gation.

2009). That is, our approach not only considers
model constraints imposed by the metamodel, but
it also considers other, typically domain- or project-
specific, constraints.

However, applying CCP to address the issue of
metamodel evolution and model co-evolution does
require some adaptations of the standard three-step
process described above. Specifically, the confor-
mance rules that are used to determine whether a
model is conforming to its metamodel do change
as the metamodel evolves. For instance, recall
the metamodel evolution described in Section 2 in
which a new mandatory reference was added to
the metamodel. Intuitively, this requires a new
constraint being added to the consistency checker.
Therefore, a mechanism for constraint management
is required to ensure that a correct set of constraints
is used for consistency checking. Moreover, CCP
generally provides repair options for inconsisten-
cies that may include changes to all involved ar-
tifacts. However, based on the typical understand-
ing of co-evolution we assume that repair opera-
tions should not change the metamodel but only
the model. Thus, we restrict the repair options to
those that include model adaptations only.

The adapted CCP process for handling meta-
model evolutions consists of two major phases:
Phase 1: Detect co-evolution failures. In

this phase, the approach performs an automatic
update of constraints and detects locations where
co-evolution is not performed correctly (i.e., where
inconsistencies occur). This, of course, includes the
situation of plainly missing co-evolution.
Phase 2: Derive options for correction of

failures In this phase, options for a correct prop-

agation of the metamodel change to the affected
model are derived.

In Fig. 8, the adapted process is depicted. In
contrast to Fig. 7, in which bidirectional arrows
were used to depict (in-)consistency between ar-
tifacts, in Fig. 8 unidirectional arrows are used to
indicate that the model M must conform to the
metamodel MM . Thus, the model is the artifact
to be adapted in order to establish conformance –
adaptations of the metamodel are not desired. Fur-
thermore, the figure includes a new artifact called
Environment. This artifact includes all other in-
fluences besides the metamodel that determine de-
sired model characteristics. Both, the metamodel
and the environment imposes restrictions (i.e., con-
straints) on models. This is depicted by the solid
arrows named restrictions. The imposed restric-
tions themselves are drawn as boxes partially hid-
den by the models. A model that does not vio-
late any of the imposed restrictions does not only
conform to its metamodel, but also to the general
environment. Note that the initial metamodel up-
date (∆MM ) that leads to MM ′ is no longer used
directly to find model adaptations. Instead, the
updated version of the metamodel (MM ′) is used
to updated the restrictions imposed on models au-
tomatically (note the ∆R), leading to an updated
set of restrictions R′. Based on the initial model
version M and the updated restrictions R′, possi-
ble repairs ∆M1..n are derived automatically. Note
again that, even though their derivation is done au-
tomatically, no repair is executed automatically. In-
stead, those possible repairs guide developers who
manually select the repair option that seems most
suitable for the specific model. This manual step is
illustrated through the use of a dashed arrow be-
tween M and M ′ instead of the solid arrow that
was used in Fig. 5.

We will now discuss the two major phases in more
detail and show how the approach handles the evo-
lution scenario presented above. The focus of this
paper, however, is on the constraint management
part in Phase 1 as this part of the process is critical
but generally not handled by existing technologies.

4. Phase 1: Co-evolution failure detection

Although metamodel evolution is likely to require
model adaptations, this is not a necessity – a meta-
model may also change in ways that do not affect
the validity of existing models. For example, when
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an optional reference is added. Additionally, mod-
els may be changed manually by designers or au-
tomatically by tools after a metamodel evolution
occurred, trying to co-evolve the model. There-
fore, it is necessary after a metamodel change –
and subsequent model adaptations – to determine
whether an affected model is consistent with the
updated metamodel. If it is, co-evolution was per-
formed correctly and no further intervention is re-
quired. If, however, the model is inconsistent with
the updated metamodel, co-evolution failed and ad-
ditional model adaptations are necessary.

4.1. Constraint management

As we have shown above, constraints can be used
to check whether a model conforms to its meta-
model. However, when the metamodel evolves, con-
straints that are based on metamodel information
may become invalid. Specifically, individual con-
straints may no longer be required, they may re-
quire updating, or new constraints may become re-
quired. By using an incremental constraint man-
agement approach, it is possible to update con-
straints after metamodel changes – ensuring that
models are always validated with an up-to-date set
of constraints.

We propose the use of constraint templates to
automate the co-evolution of metamodels and their
constraints. Based on metamodel elements, model
constraints are built automatically through tem-
plate instantiation. Basically, templates contain
the static aspects that constraints have in common
(e.g., fragments of a constraint string) and define
the points of variability. Thus, a single template
defines a constraint family. In our example, we
use the Object Constraint Language (OCL) (Object
Management Group, 2013a) since it is a well-known
and commonly used constraint language. However,
any constraint language may be used in principle.
As a metamodel evolves, templates are filled with
specific data – to reflect the evolution – and in-
stantiated to automatically generate or update the
constraints.

Before we discuss in detail how templates are
written and constraints are generated, let us return
to our motivating example and show the constraints
that are necessary to check whether a model is valid
as well as the effects of metamodel evolution on the
correctness of those constraints.

4.1.1. Constraints for motivating example

The defined reference cardinalities (e.g., 1 for
prim) in Fig. 2 implicitly define model constraints.
For example, an instance of Communication must
reference exactly one Component via prim. How-
ever, to apply consistent change propagation, we
define those constraints explicitly so that they can
be passed to a state-of-the-art consistency checker.
In particular, the metamodel in Fig. 2 defines the
following seven constraints:1

RM1 Each component belongs to a single domain
that is reached via domain.

RM2 Each component may have an arbitrary
number of sub-components reached via sub.

RM3 Each communication has a sender compo-
nent reached via sender.

RM4 Each communication has one or two receiver
components reached via rec.

RM5 Each communication has a single primary
target reached via prim.

RM6 Each communication has a single alternative
target reached via alt.

RM7 Each communication provides the com-
ponents reached via prim and alt (i.e.,
a collection of all possible receivers) via
possibleReceivers.

However, to ensure that only intended mod-
els can be built, the metamodel-based constraints
above have been amended with the following three
explicit, environment-based, project-specific con-
straints:

RE1 All possible receivers of a Communication

must be located within a single Domain (i.e.,
a set of components with a common purpose).

RE2 A communication may only occur between
components of different component domains.

RE3 It is not permitted that a single component
is used as primary and alternative target.

By stating model constraints explicitly, two im-
portant aspects become clear. First, metamodel-
based constraints often have a similar structure

1We shall express the constraints more formally later by
using OCL.
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Table 1: Template structure.

Instantiation context (IC)

Abstract constraint expression (ACE)

Variable definition (VD)

Instantiation information (II)

Data extraction expressions (DEE)

(e.g., RM1–RM6). Therefore, generating those
constraints instead of writing them manually seems
intuitive. Second, metamodel-based constraints
may easily be affected by metamodel evolution. Re-
call the evolution scenario from Section 2.3 in which
new references were added and existing ones where
changed. Specifically, the evolution scenario has
three effects on constraint validity: 1) the cardinal-
ity change in the reference rec invalidates the con-
straints RM4, 2) the addition of the reference alt2

requires a new metamodel-based constraint RM8
that checks this reference in models, and 3) the ad-
dition of alt2 to the set of references aggregated
by the derived reference possibleReceivers inval-
idates the constraint RM7. Therefore, constraints
need to be updated after the metamodel evolution
in order to obtain correct validation results. Al-
though these effects are easy to track and to address
in our example because of its simplicity, note that
manually handling such simple evolution scenarios
in industrial projects with complex metamodels and
hundreds or even thousands of constraints is error-
prone and often practically infeasible.

Next, we illustrate how constraint templates can
be written and how they are managed by a tem-
plate engine to automate constraint generation and
updating.

4.1.2. Template definition

Templates are written manually by metamodel
authors who are also in charge of maintaining and
evolving metamodels. Before discussing the author-
ing process in detail, we discuss the structure of a
template, as shown in Table 1, and the informa-
tion it requires. The instantiation context (IC) de-
fines for which elements, or combinations thereof, a
template should be instantiated. The abstract con-
straint expression (ACE) is used to define the fam-
ily of constraints generated from the template. A
constraint family consists of constraints that share
some static aspects (e.g., the structure) and have
some variable parts that differ for each constraint.

Table 2: Definition of template T1.

IC: <Reference>

ACE: context C inv:

self.R->size()>=MIN and

self.R->size()<=MAX

VD: <C, R, MIN, MAX>

II: <Reference r>

DEE: <C:r.owner.name,

R:r.name, MIN:r.min,

MAX:r.max>

Thus, the ACE captures the static parts of the con-
straint family and also identifies the locations of
variability which are also defined explicitly in the
variable definition (VD). The VD declares which
parts of the ACE are interpreted as variables. To
bind specific values to these variables, data has to
be read from specific elements that are available
when the template is instantiated. These elements
are specified in the instantiation information (II).
How the values for the variables are extracted from
the elements is declared in data extraction expres-
sions (DEE). Let us now show how we can write
a template T1 for the constraint family of RM1–
RM6 (i.e., the metamodel-based constraints for ref-
erences).

Template for cardinalities. The top-right sec-
tion “Template definition” in Fig. 9 illustrates the
steps we perform next. The remainder of the fig-
ure depicts template instantiation and change man-
agement processes we discuss later. Template T1,
shown in Table 2, creates a constraint for every in-
stance of the metametamodel element Reference,
for example when the reference rec is added to the
class Communication during the initial modeling of
our sample metamodel. Therefore, we define the
IC of our template to be <Reference>. This means
that we provide an instance of Reference to the
template in order to create a new constraint. Note
that templates are reusable for other metamodels
that are based to the same metametamodel. We
define the ACE by using the desired expression
of one sample constraint of the constraint family
(e.g., an OCL statement) and replacing all con-
crete values that are specific for a single instance
with variables. In our example, we take the ex-
pression from the constraint RM4 for the reference
Communication.rec in Fig. 2, which can be formal-
ized as the following OCL constraint:
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Figure 9: Example of steps performed during template definition, instantiation, and change management.

context Communication inv:

self.rec->size()>=1 and

self.rec->size()<=2

We replace the two values 1 and 2 with MIN and
MAX for the minimum and maximum number of con-
nected elements, the context Communication with
C for the checked class, and the two occurrences of
rec with R for the used reference. The result is the
abstract constraint expression:

context C inv:

self.R->size()>=MIN and

self.R->size()<=MAX

as defined in Table 2 with the variable parts (VD)
being <C, R, MIN, MAX>. As shown in Fig. 9, the
instantiation information of T1 is <Reference r>.

Desired constraints are built by reading the min,
max, and name values of the passed reference r as
well as the name of the class that owns the refer-
ence owner.name. The data extraction expressions
can then be written as r.min, r.max, r.name and
r.owner.name. In the DEEs, the variable to which
the read data should be assigned is written before
each DEE followed by a colon. We have now com-
pleted the template definition for T1.
Template for derived references. We use the

same process to write template T2, as shown in Ta-
ble 3, based on the constraint RM7 as an example
for the constraint family that checks derived ref-
erences. The constraint RM7 can be expressed in
OCL using the following expression:

context Communication inv:

self.possibleReceivers->includesAll(

Set{self.prim, self.alt}->flatten())

As a simplification, we replace the set of refer-
ences (Set{self.prim, self.alt}->flatten())
with a construct (collect(x|self.{x})) that
allows us to aggregate the results of differ-
ent references – based on a set of refer-
ence names – dynamically. When the tem-
plate is instantiated for the derived reference
Communication.possibleReceivers, the resulting
constraint is:

context Communication inv:

self.possibleReceivers->includesAll(

Set{‘‘prim’’,‘‘alt’’}
->collect(x|self.{x}))

The following expression collects all the ele-
ments returned by the expressions self.prim and
self.alt:

Set{‘‘prim’’,‘‘alt’’}->collect(x|self.{x})

Now that the templates T1 and T2 are written,
let us discuss how templates are instantiated auto-
matically to generate constraints.

4.1.3. Template instantiation

To enable a template, it is passed to the template
engine that observes a specific model and handles
template instantiation and updating. We will now
discuss how the template T1 for checking reference
cardinalities is instantiated when it is applied to the
metamodel in Fig. 2.
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Table 3: Definition of template T2.

IC: <DerivedReference>

ACE: context C inv:

self.DR-> includesAll(

REFS->collect(x|self.{x}))
VD: <C, DR, REFS>

II: <DerivedReference dr>

DEE: <C:dr.owner.name,

DR:dr.name,

REFS:dr.refs->collect(name)>

For each occurrence of the IC <Reference>, the
template is instantiated once. In Fig. 2 there are
six references and thus T1 is instantiated exactly
six times. However, we focus on a detailed discus-
sion of the instantiation process for the reference
Communication.rec, as illustrated in the bottom
box “Template instantiation” in Fig. 9. The pro-
cess starts with the instantiation information (1).
In this case, it contains the reference rec. The
data extraction expressions are applied to the el-
ement to retrieve the names (i.e., Communication
and rec) and the cardinality values (i.e., 1 and 2).
This is shown in Fig. 9(2). In order to allow later
updates of the generated constraints, traceability is
generated automatically by building the constraint
scope during the execution of the DEEs in step (2).
This scope contains all elements that are accessed
by the DEEs during the instantiation for the given
instantiation information (i.e., rec). The scope for
the constraint RM4 is therefore <rec.owner.name,
rec.name, rec.min, rec.max>. The variables in
the ACE are then replaced with these values to gen-
erate the constraint (3).

After applying our templates T1 and T2 to the
initial version of our example metamodel from Fig.
2, template T1 was instantiated once for every ref-
erence (i.e., six times in total), template T2 was
instantiated once to generate the constraint for the
only derived reference (i.e., possibleReceivers) in
the metamodel.

At this point we have shown how templates are
written and how they are instantiated. We have
seen that a template captures the static and the
variable parts of a family of constraints. Typi-
cally, a single constraint template is written for
every constraint family in the system. Combining
templates is only necessary in the rare cases where
different constraint families should be merged into

one. If such a merge is required, template authors
can build the corresponding template by writing a
template for the merged constraint families. Next,
we illustrate how automatic constraint updates are
performed.

4.1.4. Evolution handling

In Section 4.1.1 we discussed the effects of our
sample metamodel evolution scenario on the valid-
ity of constraints. We will now present how such
metamodel evolutions are handled automatically by
the template engine.

In our approach, evolution handling is an event-
based and incremental process. After every mod-
ification of the metamodel, the template engine is
notified about the modification, as shown in the
top-left box “Change management” in Fig. 9. The
change notification includes information about the
changed metamodel elements which the engine uses
to determine the actions that are required to adapt
the current set of constraints to the new version of
the metamodel.

After the addition of a metamodel element, the
engine looks for templates that can be instantiated
(i.e., templates where the type of the added meta-
model element matches the instantiation context).
When a metamodel element is deleted, constraints
that are based on this element (i.e., that were gen-
erated through instantiation of templates with the
removed element) are also removed. A metamodel
element modification triggers the update process
and the template engine uses the modified model
element and the constraint scopes to calculate the
set of affected constraints that need updating.

As an example, consider the metamodel version
shown in Fig. 4. We first replaced the lower bound
value 1 of the constraint RM4 with the value 2. The
change notification that is passed to the engine in-
dicates that the metamodel element rec.min was
modified. Since the scope of the constraint RM4
contains the modified element, as discussed above,
the engine detects that this constraint is affected by
the modification. Because there are no other con-
straints that include the modified model element in
their scope, RM4 is identified as the only constraint
that needs to be updated.

The update is performed by executing the data
extraction expressions that added the modified
metamodel element to the constraint’s scope, as
depicted by step (4) in Fig. 9, and replacing the
outdated values in the constraint expression with
the newly retrieved ones. In our example, rec.min

10



now returns the value 2. Replacing the old value
results in the new constraint expression

context Communication inv:

self.rec->size()>=2 and

self.rec->size()<=2

And the constraint co-evolution of RM4 to RM4′

was completed successfully. Note that currently we
delete the existing constraint and re-instantiate the
template to generate an updated constraint. Incre-
mental updates of single values or logical fragments
in existing constraints without re-instantiation of a
template will be addressed in future work.

The second metamodel modification we have to
consider is the addition of the new reference alt2

to Communication. When the template engine is
informed that a reference has been added, it auto-
matically discovers that this element matches the
instantiation context of template T1. Therefore,
template instantiation is triggered and the instan-
tiation information <alt2> is used by the data re-
trieval expressions to retrieve the values that are
then used to replace the variables in T1 in order to
produce the required constraint RM8:

RM8 Each communication has a single second al-
ternative target reached via alt2.

This constraint has the following formal represen-
tation in OCL:

context Communication inv:

self.alt2->size()>=1 and

self.alt2->size()<=1

The third metamodel evolution we discussed ear-
lier was the adaptation of the derived reference
possibleReceivers to include the newly added
reference alt2. This adaptation affects the prop-
erty possibleReceivers.refs, which is in the
scope of the instantiation of template T2 for the
derived reference possibleReceivers that generated
the constraint RM7. Therefore, RM7 must be up-
dated to RM7′ by re-instantiating T2. After up-
dating, the expression of RM7′ has changed to the
following:

context Communication inv:

self.possibleReceivers->includesAll(

Set{‘‘prim’’, ‘‘alt’’,

‘‘alt2’’}->collect(x|self.{x}))

For the sake of completeness, let us finally con-
sider what would happen if we remove the derived

Figure 10: Constraint instance scopes for validation of RM3
and RM4 on C1.

reference Communication.possibleReceivers in
another evolution step. In that case, the template
engine would identify RM7′ as the only constraint
that was generated by instantiating a template with
the removed element. Therefore, it would remove
the no longer needed constraint RM7′ automati-
cally.

4.2. Consistency checking

After updating the set of constraints imposed
by the metamodel, standard consistency checking
mechanisms can be used to detect inconsistencies
(e.g., Nentwich et al., 2002; Groher et al., 2010).
While the typical scenario is that an unchanged
model becomes inconsistent after metamodel evolu-
tion, it is also possible that a previously inconsistent
model becomes consistent after a metamodel evo-
lution without any model adaptations. Addition-
ally, model adaptations that are performed for the
purpose of co-evolution, for example by automatic
co-evolution approaches, may be incorrect and ac-
tually introduce new inconsistencies in case there
are environment-based model constraints. If a con-
sistency checker that uses an up-to-date set of con-
straints detects inconsistencies after a metamodel
evolution, model adaptations are required and co-
evolution was not done correctly.

4.2.1. Incremental consistency checking

As the model size increases, so does the effort
to check its consistency. Checking consistency in
an entire model can easily become a time con-
suming task. Incremental consistency checking ad-
dresses this limitation by looking only at a sub-
set of an entire model, namely the elements that
change as a model evolves (Egyed, 2006). This
set of elements can be either directly observed or
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calculated from differences between model versions
(Blanc et al., 2009; Reder and Egyed, 2010). The
existing approach automatically defines constraint
instances that validate whether specific model el-
ements violate a given constraint (Egyed, 2006).
The change impact scope of a constraint instance
is the set of model elements that are used for cal-
culating the constraint instance’s validation result
which are also computed automatically. For exam-
ple, Fig. 10 shows scopes for constraint instances
of the constraints RM3 and RM4 for the commu-
nication C1 that require C1 to have exactly one
sender component and between 1 and 2 receiver
component, respectively. The scope of a constraint
instance consists of all elements that are accessed
during the validation of the constraint for a spe-
cific model element. For example, the scope of
the constraint instance RM4 : C1 includes C1 it-
self and all elements that are reached through its
rec reference (i.e., C1.rec). Changes falling within
scope of a constraint instance, for example the ad-
dition of another component reached via rec to
C1 (i.e., a change of C1.rec), would lead to a re-
validation of only those constraint instances that
include the modified model element in their scope.
This means that in Fig. 10 only the constraint in-
stance RM4 : C1 would be re-evaluated whereas
the instance RM3 : C1 would not be affected (it
includes only C1 and C1.sender).

State-of-the-art incremental consistency checkers
automatically create, re-evaluate, and destroy con-
straint instances according to changes in the mod-
els. Moreover, those approaches do handle the ad-
dition and removal of constraints efficiently. For ex-
ample, passing a new constraint to the consistency
does not cause any existing constraint instances to
be re-evaluated. Thus, we do suggest for scala-
bility reasons that consistent change propagation
is performed with incremental consistency check-
ers. However, any kind of consistency checking ap-
proach can be used in principle. Next, we discuss
how the metamodel evolution scenario from Sec-
tion 2 and the automatic constraint management
discussed in Section 4.1.4 affect the consistency sta-
tus of our sample model.

4.2.2. Consistency effects of sample evolution

After updating RM4 to RM4′, RM7 to RM7′,
and adding the new syntactical constraint RM8, as
presented above, any standard consistency checker
will find that the previously consistent model in
Fig. 3 contains the following inconsistencies after

Figure 11: Scopes of inconsistent constraint instances after
constraint updates.

the set of applied constraints was updated, as shown
in Fig. 11: neither C1 nor C2 provide a second
alternative target. Therefore, both communica-
tions do violate the newly required constraint RM8.
Moreover, neither of those communications does
provide the required number of two concurrently ac-
tive receivers. Thus, they also violate the updated
constraint RM4. Overall, our initial assumption
that additional model adaptations are necessary for
correct co-evolution has been confirmed. However,
note that the model is still consistent with respect
to RM7′ as the reference alt2 for both commu-
nications C1 and C2 in Fig. 3 does not return any
elements (causing the model to be inconsistent with
respect to RM4′) and therefore the existing set of
elements obtained through possibleReceivers is
still correct (e.g., Y1 and Y2 for C1).

5. Phase 2: Co-evolution correction

Once co-evolution failures have been detected,
our approach reaches Phase 2 in which those fail-
ures are corrected.

5.1. Repair options

To correct co-evolution failures and propagate
metamodel changes correctly, it is necessary to find
model adaptations (i.e., repair options) that trans-
form the inconsistent model into a consistent one.
Unfortunately, finding suitable adaptations is non-
trivial as every change to a model may not only
eliminate the violation of a constraint, but it may
also cause other constraints to become violated.
However, single changes can of course also remove
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Figure 12: Repair options for missing reference alt2: tradi-
tional approaches.

several inconsistencies at once. Due to those side
effects (Reder and Egyed, 2012a) of model adapta-
tions, finding suitable corrections is a complex task
that should not be performed in an ad-hoc man-
ner. Our approach relies a reasoning mechanism
that takes into consideration all design constraints
present in a model to find suitable adaptations
(Reder and Egyed, 2012a). Note that using not
only those constraints that are actually based on
the metamodel but also those based on the project
environment, repair options can be computed with
higher precision as more information is available for
the reasoning engine when computing side effects.

Let us come back to our example and discuss
the differences between traditional co-evolution ap-
proaches and co-evolution through CCP.

5.1.1. Repair options in traditional approaches

First, we look at the repair options that are
typically considered by traditional co-evolution ap-
proaches. In particular, we focus on the addition
of the reference alt2, as shown in Fig. 4, and the
model shown in Fig. 3. For traditional approaches,
conformance can be established by adding an ap-
propriate reference in the model for both communi-
cations C1 and C2. As shown in Fig. 12, any exist-
ing Component, or also a newly added component
in any existing or also newly added domain (the
latter option is not depicted in the figure), would
be a valid solution. Overall, 12 different solutions
are possible to fix each of the two communications,
which makes 144 possible solutions in total. How-
ever, it is not clear which element should be chosen
for C1 or C2, respectively. If an approach performs
adaptations automatically, it is likely that a solu-

tions is chosen that is different from one that would
have been produced by an informed developer. If,
on the other hand, an approach does not automate
the adaptation but presents possible repairs to de-
velopers, note that some of the components marked
as valid second alternative targets in Fig. 12 are
actually invalid. For instance, selecting the compo-
nent X1 would be seen as valid option even though
this would violate the environment-based constraint
RE1. This simple example demonstrates that tak-
ing into account metamodel conformance only is
not sufficient to derive actually valid suggestions
for model adaptations.

For the changed cardinality of the reference rec

from 1..2 to 2, the validity of derived repair op-
tions does depend on the quality of the co-evolution
approach and in particular on the complexity and
level-of-detail of the used translations of metamodel
changes. If only simple translations are used, tradi-
tional approaches may generate and randomly se-
lect repair options that include existing and also
newly created components. If, however, more com-
plex translation rules are used, it is possible that
only valid repair options (i.e., options that suggest
a component reached via either alt or alt2) are
derived and executed.

Regarding the addition of the new refer-
ence alt2 to the aggregated references in
possibleReceivers.refs, we have discussed
above that this does not cause an inconsistency im-
mediately. Note that with any automated approach
that is based on a translation of changes, the order
of rule execution may be critical. In our example,
let us consider first the case in which the reference
alt2 is set in an affected model and then a trans-
lation rule for the changed derived reference is exe-
cuted. In this case, a sophisticated translation rule
that considers not only the metamodel change it-
self but also the status of the affected model might
be able to produce a correct solution in which the
newly set second alternative target of a communi-
cation is included in the set of possible receivers.
However, if the addition of the reference alt2 was
not handled before the change of the derived ref-
erence is processed, either because of rule execu-
tion scheduling issues or simply because the used
approach does not chose solutions randomly when
a translation is ambiguous due to multiple valid
solutions, even a sophisticated translation cannot
produce a valid solution as the second alternative
target is not set in the model at the time the corre-
sponding element should be added to the set of pos-
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Figure 13: Repair options for missing reference alt2: CCP.

sible receivers. Thus, the translation would produce
a result that is actually correct at the time of the
translation, but not after the co-evolution process
has finished and alt2 was finally set. Even worse,
such a translation would be performed automati-
cally as there is no ambiguity involved (the second
alternative target is simply added to the list of pos-
sible receivers). Therefore, later model adaptations
in which that target is set do cause inconsistencies
without informing artifact developers.

5.1.2. Repair options with CCP

Let us now show how the additional considera-
tion of environment-based constraints addresses the
issue we just pointed out. During Phase 1 of our ap-
proach, two inconsistencies caused by the elements
C1 and C2 are detected in the model. First, we
consider the inconsistency involving C1. To correct
the syntax and remove the violation of constraint
RM8, a reference alt2 to any component is suffi-
cient. Moreover, in each domain a new component
could be created and used as second alternative tar-
get for C1. Of course, it would also be possible
to create a new component in an entirely new do-
main. Therefore, there are 12 options available in
total: one for each of the eight existing (i.e., solid
drawn) components in Fig. 13, one for each of the
three domains, and one for a new domain with a
new component – these are the same options that
were also identified by traditional approaches as dis-
cussed above. However, by also taking into account
the domain-specific constraints RE1 – RE3 from
Section 4.1.1, our approach computes side effects
for each of those options. Due to constraint RE2,
adding either X1 or X2 as second alternative target
to C1 is not a valid adaptation as this would violate
RE2 by adding a possible receiver that is within

the sender’s domain. Additionally, the existing ref-
erences prim and alt from C1 to components of
domain Y disallow the use of any components that
belong to a domain other than Y , according to con-
straint RE1. This rules out any remaining options
that involve a second alternative receiver in domain
Z or in a newly created domain. Finally, constraint
RE3 disallows Y 1 and Y 2 as options because they
are already possible receivers. Note that this means
a reduction from 12 options – from which 9 are ac-
tually invalid when considering restrictions imposed
by the project environment – to only 3 options that
co-evolve C1 correctly. Those are drawn dotted in
Fig. 13.

For the communication C2, the constraints RM8
and RE1 – RE3 can only be satisfied by adding a
new component to domain X that is used as sec-
ond alternative receiver, as indicated by the dotted
drawn component X3 in Fig. 13.

Overall, using consistent change propagation re-
duced the number of repair options for each viola-
tion of RM8 from 12 to 3 and 1 for C1 and C2,
respectively. This means that only a total of 3 dif-
ferent solutions remains, compared to 144 different
solutions with traditional approaches.

For the cardinality change of rec, consistent
change propagation will again make sure that
only those components are suggested that are
actually valid with respect to the defined con-
straints. For the change of the derived reference
possibleReceivers, note that an inconsistency
can only be detected and thus a repair options can
only be computed after alt2 was set for a com-
munication in the model. As soon as a second al-
ternative target has been chosen (which is indeed
necessary to remove an inconsistency with respect
to RM8, as discussed previously), an inconsistency
is detected. Then, valid repair options are com-
puted and presented to developers automatically.
With co-evolution through consistent change prop-
agation, inconsistencies are detected at all times
during model evolution as soon as they occur.

5.2. Change execution

Although each derived repair option fixes a
model, some of them may seem more intuitive and
more logical to stakeholders than others. There-
fore, stakeholders should choose manually which
of the available repair options should be executed.
However, repair options could of course be selected
and executed automatically if model characteristics
such as readability are of low importance.
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In our example, the co-evolution of C2 can be
done automatically as there is only one repair op-
tion. To repair the inconsistency of C1, a user has
to decide between only three options that propagate
the metamodel change correctly to the model.

6. Case study

To validate our approach, we conducted a case
study with the UML metamodel and 23 UML mod-
els. In this case study, we systematically adapted
the UML metamodel and observed the effects on
the correctness of UML models. Moreover, we gen-
erated repair options for introduced inconsistencies.
However, the case study focuses on assessing the
scalability of the constraint management part of our
approach as a) it is a key contribution of this pa-
per, and b) it has not been validated before – in
contrast to the technologies we employed for con-
sistency checking and repair generation.

6.1. Prototype implementation

The individual parts of the approach have been
implemented and validated in previous work. For
the constraint management part, a template-based
transformation engine had been developed that
generates and updates metamodel-based model
constraints (Demuth et al., 2013c). For the con-
sistency checking, the Model/Analyzer consistency
checking framework that allows for efficient incre-
mental addition and removal of models constraints
had been used (Reder and Egyed, 2010). Finally,
for the repair option generation, a generic inconsis-
tency repair mechanism that builds upon the Mod-
el/Analyzer framework had been employed (Reder
and Egyed, 2012a).

However, for this case study we developed a new
prototype with enhanced functionality that inte-
grates those individual parts of constraint manage-
ment, consistency checking, and repair generation,
and thus presents a coherent framework for co-
evolution through CCP. All involved components
(i.e., template engine, Model/Analyzer consistency
checker, and repair generation engine) have been
adapted to use a single data repository, which not
only contains metamodel and model but also con-
sistency information. Moreover, the prototype sup-
ports arbitrary metamodels and models whereas
previous implementations were limited to EMF-
based metamodels and models.

As our approach, in general, is not limited to
a specific consistency checker, the constraint man-
agement part was slightly adapted to reduce the re-
quirements an employed consistency checker must
meet. In particular, constraint generation was
changed: instead of generating a single constraint
at each template instantiation, the template engine
generates one additional constraint for each sub-
type of the original constraint’s context. For ex-
ample, the constraints generated from T1 for the
reference rec has the context Communication, as
discussed in Section 4. Thus, all communications
should be checked with this constraint. This, of
course, also includes instances of any subtypes of
Communication. Even though some consistency
checkers are capable of handling type inheritance,
our prototype would generate an additional con-
straint for each subtype of Communication (if exis-
tent). While this leads to more complexity in the
constraint management component, it allows for a
broader variety of consistency checkers to be used.
If, however, a consistency checker is capable of han-
dling type hierarchies, the generation of constraints
for subtypes of the desired constraint context can
be deactivated.

6.2. UML metamodel & UML models

The UML metamodel was chosen as the subject
for our case study because it is a well known and
commonly used language for modeling software sys-
tems (Lange, 2006). We argue that its size and high
level of complexity make it ideal for our purposes
because the sample evolutions we performed sim-
ulate typical evolutions of metamodels in general.
Additionally, numerous industrial software models
are available (Egyed, 2011).

For the consistency checking and repair genera-
tion parts, 23 UML models with sizes between 103
and 65,157 model elements (average: 3,929 model
elements) were used. Those models typically in-
clude class and sequence diagrams as well as state
machines.

6.3. Constraint templates

For our case study, we focused on templates that
generated syntax constraints for UML models. The
UML metamodel itself was represented in Ecore.
To ensure correctness of UML models, references
and attributes in the UML metamodel were trans-
lated into specific constraints. Two templates were
used to generate constraints that check the correct
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cardinalities of references and attributes defined in
the UML metamodel. Specifically, the template T1
was used with the IC and II being EReference and
EAttribute for references and attributes, respec-
tively.

6.4. Metamodel evolution & test setup

Different metamodel modifications and common
refactorings have been discussed in literature (e.g.,
Herrmannsdoerfer et al., 2009a; Cicchetti et al.,
2008; Hassam et al., 2011; Markovic and Baar, 2005;
Sunyé et al., 2001; Wachsmuth, 2007). During most
common metamodel evolutions, references or at-
tributes are added, removed, or they are modified
(e.g., the cardinality of an attribute is changed or an
attribute is moved to another class). Therefore, we
performed these kinds of evolutions with the UML
metamodel.

Specifically, for each of the references and at-
tributes used in the UML metamodel (i.e., all in-
stances of EReference and EAttribute) the fol-
lowing sequence of changes was performed: 1) the
element was removed from the metamodel, 2) the
element was added back to the metamodel, 3) the
element’s property name was changed.

In order to thoroughly assess the scalability of
our prototype, the metamodel evolution scenarios
were executed with systematically varied param-
eters. First, the number of templates may affect
the time needed by the template engine for finding
templates suitable for instantiation after the ad-
dition of a model element. Therefore, tests were
executed with 1 to 4,000 active templates. The
added templates were both copies of the templates
described in Section 6.3 that had to be instantiated
for metamodel elements and also dummy templates
that were not instantiated. Thus, there is no per-
fect collinearity between the number of templates
and the number of template instances, which al-
lowed the independent investigation of the effects
of increasing numbers of templates and the effects
that may be caused by increasing numbers of tem-
plate instances. Overall, tests were conducted with
116 to 968,402 template instances managed by the
template engine. Note that an increasing number
of template instances may affect the time required
for finding those instances that become obsolete af-
ter the removal of a metamodel element. Last, the
number of scope elements managed by the template
engine was varied independently of the number of
template or template instances.
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Figure 14: Total processing time for metamodel element ad-
dition depending on evolution impact.
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Figure 15: Processing time for metamodel element addition
per affected instance depending on changed element.

Each evolution scenario, as described above, was
executed 100 times for each reference and attribute
in the UML metamodel and the median execution
times for handling the metamodel change were used
for analysis. This was repeated for each individual
parameter configuration. All tests were executed
on an Intel Core i5-650 machine with 8GB of mem-
ory running Windows 7 Professional. All processing
times were measured in nanoseconds using standard
Java functionality.

6.5. Constraint management

Next, we present the performance and scalability
results regarding the constraint management part
of our approach, categorized by evolution scenario.
For each of the following three scenarios, the ob-
served processing times include all processing that
is required to handle a metamodel change and per-
form a required update of the set of constraints ap-
plied onto a model. That is, the time between the
initial information about a metamodel change and
the completion of all required changes to the set of
applied constraints.

6.5.1. Add metamodel element

For the addition of a new metamodel element,
a strong correlation between the number of newly
required constraints (i.e., template instances) was
observed. This correlation is visualized in Fig. 14

16



1
1
0

1
0
0

1
0
0
0

R
u
le

 c
o
n
te

x
ts

0 100 200 300 400

Metamodel Element

Figure 16: Number of constraint contexts depending on
metamodel element.
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Figure 17: Processing time for metamodel element addition
per affected instance depending on constraint contexts.

where the total processing time for a metamodel el-
ement addition is depicted as function of the num-
ber of affected (i.e., newly required) template in-
stances. Note that this graph grows linearly. Fur-
thermore, note that a single metamodel element ad-
dition – as with an element removal – can only cause
a single instantiation per managed template. The
practical implications of this will be discussed in
Section 7.1.

The average processing time for a single template
instantiation (i.e., the processing time per affected
template instance) for each adapted metamodel el-
ement is depicted in Fig. 15. As mentioned above,
in our prototype, the instantiation of a template
produces one constraint for each type for which a
constraint needs to be validated. Thus, the process-
ing time may be affected by the number of types
for which constraints need to be built. In Fig. 16,
the number of constraint contexts required for each
adapted metamodel element are depicted. Note
that the processing time for a single instantiation
is significantly above average in Fig. 15 for those
metamodel elements that require constraints being
generated for a large number of contexts. However,
Fig. 16 also shows that in the UML metamodel most
changes only required the generation of a single con-
straint per template instantiation. Moreover, as de-
picted in Fig. 17 where the time required for a sin-
gle template instantiation is drawn as a function of
the number of constraint contexts, the actual effect
of the number of rule contexts on the instantiation
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Figure 18: Total processing time for metamodel element re-
moval depending on evolution impact.
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Figure 19: Processing time for metamodel element removal
per affected instance depending on constraint contexts.

time is negligible in practice.

6.5.2. Remove metamodel element

For the removal of a metamodel element, Fig. 18
depicts the total processing time for handling the
change depending on the number of template in-
stantiations that become obsolete. As with element
addition, the time for processing element removal
does increase linearly with the evolution impact.
However, note that the overall processing times
(i.e., the time required for finding existing template
instantiations that become obsolete) are much lower
than times for element addition. This is explained
by the fact that during instantiation, values must
be read from the metamodel, constraints are gen-
erated, and traces are built. For removal, however,
previously generated traces are used to find obso-
lete instantiations efficiently. By using existing
traces and supported by the fact that no new ob-
jects must be generated, the number of constraint
contexts for obsolete constraints does not affect pro-
cessing times significantly. In Fig. 19, the average
processing times per obsolete template instantia-
tion is depicted as a function of the constraint con-
texts for the corresponding constraint. Note that a)
the processing time per affected template instance
stays below 0.1 ms, and b) there is no correlation
between constraint contexts and processing time, as
indicated by the slope of the regression line.
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Figure 20: Total processing time for metamodel element up-
date depending on evolution impact.
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Figure 21: Processing time for metamodel element update
per affected instance depending on rule contexts.

6.5.3. Update metamodel element

For the update of a metamodel element, the to-
tal processing time again was affected significantly
by the number of affected template instantiation
(i.e., template instantiations that had to be up-
dated with new values), as shown in Fig. 20. Simi-
lar to the case of metamodel element addition, the
observed growth is linear. Moreover, the total pro-
cessing times do not differ significantly for a given
change impact size between metamodel element ad-
dition and update. This is caused by the fact that
the removal of outdated template instances does not
contribute significantly to the total time for updat-
ing affected instantiations (as it only varies between
1 ms and 5 ms). The re-instantiation of an affected
template does require the same steps as an initial
instantiation except that for a re-instantiation the
templates to instantiate are found based on existing
traces instead of being looked up by their instan-
tiation context. Therefore, the processing time
per affected template instance does depend on the
number of constraint contexts required, as shown in
Fig. 21. However, the overall increase caused by an
increase of constraint contexts was less than 2 ms.

6.5.4. Summary

The results for the individual evolution scenarios
indicate that constraint management can be done
efficiently and that our prototype implementation
does scale well even for large change impact sizes.

To sum up the case study results for the constraint
management part, Table 4 shows the effects of dif-
ferent aspects on total processing times.

The results for a regression of the total process-
ing time on the varied factors (i.e., template count,
number of total template instantiations, number
of scope elements, number of affected template in-
stances, and number of rule contexts for affected
constraints) confirms our expectation that the num-
ber of active templates as well as the total number
of template instantiations are both insignificant and
thus irrelevant for processing times. Even though
the number of scope elements is statistically signifi-
cant, its contribution to the total processing time is
negligible. As observed above, the main contribu-
tors to total processing times are the rule contexts
of affected constraints and primarily the number
of affected template instantiations. Note that the
considered factors explain more than 99% of varia-
tion for metamodel element addition and updating,
and nearly 45% of variation for metamodel element
removal. Overall, the results confirm our expecta-
tions and suggest that constraint management is
scalable.

6.6. Consistency checking & repair options

Even though the focus of the case study was
to evaluate constraint management, the developed
prototype was used to check UML models with con-
straints that have been adapted after metamodel
evolution. This was done primarily to demonstrate
the integration of the consistency checker with the
constraint management component.

After the introduction of new attributes and ref-
erences in the UML metamodel and the generation
of a corresponding constraint, the employed incre-
mental consistency checker did find inconsistencies
in the checked UML models, indicating that co-
evolution is required. Since the employed Model/-
Analyzer consistency checker has been thoroughly
validated before and our case study with a slightly
adapted version did not reveal any new information
or significant differences to previously observed be-
havior, we refer to Reder and Egyed (2010, 2012b)
for further details on this component’s scalability
and performance.

As with the consistency checking part, we em-
ployed an existing technology, proposed by Reder
and Egyed (2012a). For each inconsistency detected
in a model after a metamodel evolution and the cor-
responding update of applied constraints, an ab-
stract repair (i.e., a repair is non-executable but
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Table 4: Regression results for total processing times.

Time (ms) Add Remove Update
Templates 0.0212 0.000129 -0.00674

(0.0260) (0.000251) (0.0243)

Template instances -0.000143 5.87e-08 -0.0000149
(0.0000736) (0.000000710) (0.0000687)

Scope elements 0.000396∗∗∗ 0.00000250∗∗∗ 0.000190∗∗

(0.0000709) (0.000000684) (0.0000662)

Affected instances 5.108∗∗∗ 0.00173∗∗∗ 5.101∗∗∗

(0.0271) (0.000261) (0.0253)

Rule contexts 0.217∗∗∗ 0.000416∗∗∗ 0.296∗∗∗

(0.00958) (0.0000924) (0.00894)

Constant -6.785∗∗∗ 1.448∗∗∗ -8.672∗∗∗

(0.661) (0.00637) (0.617)
Observations 91391 91391 91391
R2 0.997 0.448 0.997

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

still guides a tool user) was generated. The times
required for finding repairs and also the behavior in
terms of scalability were consistent with those re-
ported in Reder and Egyed (2012a), thus we omit a
detailed discussion here. However, note that repairs
are generated within milliseconds per inconsistency.

Overall, the observed results for consistency
checking and repair generation demonstrate by ex-
ample that co-evolution through CCP is technically
feasible and that chaining the individual steps does
not lead to significant overheads at either step.

7. Discussion

Next, we further discuss the performance results
obtained from our case study, the applicability of
our approach, and also possible threats to validity.

7.1. Case study results

As we have briefly mentioned above, a single
metamodel element addition or removal can only
cause a single instantiation per managed template
to be affected. The large sizes of change impacts
in our case study may therefore be unlikely to be
reached in practice, as a single template produces
a family of constraints. Although a typical number

of required templates cannot be given – as this de-
pends not only on the specific metamodel and the
characteristics that consistent models should have,
but also on how templates, and the constraints they
produce, are written – we believe that typically very
few templates are sufficient to produce constraints
that check metamodel conformance. For instance,
if in our example the correct types of references
should also be checked, this could be achieved in
two ways: 1) by adding the required OCL state-
ments to the constraints that are produced by T1
(i.e., add information to the abstract constraint ex-
pression and define new variables and extraction
expressions), or 2) by writing a new template that
produces type-checking constraints.

With a rather small set of templates being suf-
ficient for typical conformance checking, we expect
that most change impacts for element addition and
removal remain smaller than 100 template instances
(which already requires at least 100 active tem-
plates). For a change impact with exactly 100 af-
fected template instances, mean total processing
times for constraint management of 510 ms and
1.7 ms have been observed for element addition
and removal, respectively. An update of a meta-
model element may, however, cause change impacts
larger than the number of templates because a sin-
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gle metamodel element may – in the most extreme
case – be used during each instantiation of each
template. Thus, in the worst case scenario each ex-
isting template instantiation must be updated after
a metamodel element update. However, even in this
unlikely case the results of our case study suggest
that processing time grows linearly and thus scales.

7.2. Applicability

We have illustrated how our approach updates
constraints and derives options for correcting co-
evolution failures. Although we have used the pro-
posed solution in isolation to keep the example sim-
ple and focused, it is compatible with existing auto-
matic co-evolution techniques. When used in isola-
tion, our approach detects the absence of necessary
model adaptations as co-evolution failures. When
combined with other approaches, it also detects co-
evolution failures that are based on incorrect model
adaptations. Therefore, our solution is not a sub-
stitute but a complement to existing technologies.

7.2.1. Metamodels and languages

The prototype implementation is generic and
supports arbitrary metamodels and models; the em-
ployed consistency checker uses OCL constraints.
However, by using a different consistency checking
technology, other constraint languages may be used.
The generation of repair actions based on inconsis-
tencies and with consideration of side effects may
also be exchanged. Thus, the presented approach
is generic and can be implemented using different
technologies.

The presented approach is applicable to any
metamodel that imposes constraints onto conform-
ing models. Note that the generated constraints
are very specific in that they include metamodel
information in the actual constraint text. More-
over, they are defined for specific kinds of model
elements (e.g., communications in our motivating
example). Thus, our approach does not require
a model to provide navigation functionality that
allows the consistency checker to read metamodel
values directly during constraint validation. Fur-
thermore, the specific constraints generated by our
approach do support incremental and thus efficient
re-validation of individual constraints on individual
model elements, compared to generic approaches
were a single constraint checks multiple aspects of
a model element. In our motivating example, for
instance, a generic constraint might check whether

the Communication does provide all the attributes
and references that are defined in the metamodel.
Typically, such a generic constraint has to be re-
validated each time the attributes and references
provided by an instance of Communication are
changed. With a specific constraint, as it is gen-
erated with our proposed template approach, how-
ever, only those constraints that are actually af-
fected by the change in attributes and references
have to be re-validated.

7.2.2. Kinds of constraints

In the running example and also the conducted
case study, we focused on syntax constraints. How-
ever, our approach also supports the evolution
of language semantics and the corresponding con-
straints.

Static semantics of a modeling language can typi-
cally be expressed as constraints (e.g., Object Man-
agement Group, 2013b; Egyed, 2011). For instance,
several well-formedness rules exist for the UML that
reach far beyond simple syntax constraints (Egyed,
2011). Note that also these semantics constraints
may depend on metamodel information. As an ex-
ample, consider a constraint that requires messages
in UML sequence diagrams to be reflected by opera-
tions in UML class diagrams. This can be expressed
as follows in OCL:

context Message inv:

self.receiveEvent.covered->forAll(x|

x.represents.type.ownedOperation->exists(y|

y.name=self.name))

If the metamodel attribute Message.receiveEvent
is changed to Message.receiver, for instance, this
requires an update of the constraint to:

context Message inv:

self.receiver.covered->forAll(x|

x.represents.type.ownedOperation->exists(y|

y.name=self.name))

Handling such changes with our proposed con-
straint management approach is indeed possible,
as it was demonstrated in (Demuth et al., 2013b).
When using the templating approach presented in
this paper, a singleton template can be used that
is instantiated exactly once to produce the desired
semantic constraint. Such a singleton template in-
stantiation provides a constraint scope that is used
to determine whether a metamodel change requires
a re-instantiation.
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It is of course also possible that metamodel se-
mantics are evolved manually by adding, adapting,
or removing existing semantic constraints that are
not produced through template instantiation. In
this case, the consistency checker handles the in-
cremental update to the set of applied constraints.
If this update of constraints leads to inconsisten-
cies, co-evolution of the model is required in order
to (re-)establish well-formedness. Note that this is
not different from handling syntax changes. Thus,
we omitted this scenario in our case study.

Of course, for changes of the environment the ar-
gument is valid as well. If the environment changes,
so must environment specific constraints. Even
though such constraints may be managed by our
constraint management, this is beyond the scope
of this paper. However, we refer to Demuth et al.
(2013b) for details about how environment-based
constraints can be updated automatically.

Overall, the only requirement to apply our ap-
proach of co-evolution through CCP is that there
must be some constraints imposed by a metamodel
on models. However, in a well-established model-
driven engineering process such constraints should
exist anyway to ensure correctness and validity of
models. Therefore we argue that often only min-
imal effort is needed to implement the proposed
approach in a development process and to migrate
existing models; especially when compared to other
approaches that always require migration strategies
to be developed.

7.3. Benefits of co-evolution through CCP

As we have discussed in Section 3.1, co-evolution
of metamodels and models is an issue that has been
partially addressed by various approaches. While
our case study has shown that our approach handles
evolution efficiently and derives repairs within mil-
liseconds, the major benefits of our approach over
existing work is of qualitative nature. To our knowl-
edge, there are no other approaches that consider
constraints imposed by metamodel syntax or se-
mantics and also environment-based constraints for
co-evolving models. Existing approaches either de-
rive model adaptations from metamodel changes or
they execute user-definable model migration strate-
gies. Both kinds of approaches do not necessarily
consider metamodel semantics or evironmental con-
straints. Hence, they may produce updated models
that are syntactically correct but are still not valid
with respect to language semantics or the model-
ing environment. However, all three aspects are

considered automatically when our approach of co-
evolution through CCP is employed.

Moreover, our approach does not prescribe a sin-
gle strategy that updates models, but instead it pro-
vides guidance for semi-manual model adaptation.
In doing so, premature design decisions that have to
be made during authoring of transformation rules
or migration strategies are avoided and situation-
specific contexts can be considered when designers
choose between possible repairs. Thus, we argue
that the adaptations performed with our approach
are of higher quality than adaptations performed
with automatic approaches – it produces models
that are not only valid with respect to syntax, se-
mantics, and the environment, but that are also
intended by designers.

7.4. Threats to validity

Although the feasibility and the applicability of
our approach to a complex metamodel such as
the UML has been demonstrated through the con-
ducted case study, some threats to validity remain.

7.4.1. Usability

While our approach considers more information
than other existing approaches when looking for
model adaptations, it certainly requires active par-
ticipation of designers that choose specific model
adaptations to be performed. Although we have
yet to assess the usability of co-evolution through
CCP from a user’s perspective, we argue that us-
ability can generally be achieved in common use-
age scenarios by combining the approach with ex-
isting technologies. There are several factors which
determine the usability of our approach for a spe-
cific evolution: the number of inconsistencies, the
number of repair options per inconsistency, and the
effort needed for a developer to evaluate different
repair options and selected the most appropriate
one. Without employing other technologies, the
usability of our approach declines with increasing
numbers of inconsistencies. However, studies (Her-
rmannsdoerfer et al., 2009b, e.g.) have shown that
for individual metamodel changes often only a small
number of model adaptation is necessary (i.e., less
than 100). This indicates that our approach is us-
able in practice. Indeed, if a metamodel evolution
causes a large number of inconsistencies (e.g., hun-
dreds), fixing each inconsistency in a guided manner
by selecting one of several repair options might seem
impractical. However, our approach can be chained
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with automatic repair option execution. For exam-
ple, it is possible that designers fix several inconsis-
tencies in a semi-automatic manner by using pro-
vided guidance, and decide that the remaining in-
consistencies should be fixed automatically. Indeed,
executing one of the available repairs automatically
for every remaining inconsistency is straightforward
and can be done easily. However, note that in this
case either a certain kind of repair can be chosen by
a designer to be executed, or a strategy for finding
the best repair for every inconsistency may be used.
For example, a strategy may always execute the re-
pair that requires the least atomic model changes.
Either way, designers are initially informed about
all points of co-evolution failures and can decide
which parts of a model should be updated manu-
ally with guidance and which parts are less critical
so that they can be updated automatically. In the
most extreme case, a model may be co-evolved au-
tomatically by automatically executing repairs for
all inconsistencies. Note that in this case user in-
teraction is no longer required and the approach
still produces an updated model that has, at least,
a higher chance of being valid compared to other
co-evolution approaches because of the additional
information that is used for computing repair op-
tions (i.e., environment-based constraints).

For those inconsistencies that ought to be fixed
in a guided manner by designers, the number of re-
pair options affects usability. For common inconsis-
tencies in software design models we have found in
previous work that the number of repair options per
inconsistency remains rather small and can be han-
dled easily by designers (Reder and Egyed, 2012a).
For inconsistencies with a large number of repair
options, multiple similar concrete repairs (i.e., re-
pairs that can be executed without further input)
can typically be combined into as abstract repairs
that requires some sort of user input (e.g., defining
a specific value, such as a class name). For inconsis-
tencies with concrete repair options, the effort re-
quired for designers to choose the most appropriate
option depends not only on the specific metamodel
but also on the specific project.

Overall, we believe that usability depends pri-
marily on how information is presented to design-
ers and which technologies are employed for further
automation. However, a case study regarding us-
ability in realistic modeling projects with evolving
metamodels is part of future work.

7.4.2. Generalizability of results

Since the case study presented in the paper re-
lies on a single metamodel that was evolved and
a limited set of two kinds of templates that were
instantiated, the question whether the observed re-
sults are generalizable can be raised. However, in
our case study we systematically varied relevant fac-
tors such as the number of applied templates or the
actual impact size of a metamodel change.

The metamodel size and complexity is not rel-
evant for scalability or performance as handling
metamodel changes by the template engine never
requires searches of the metamodel. Specifically,
for new metamodel elements, only the contexts of
active templates are relevant. For removed meta-
model elements, only template instantiations that
are based on the removed elements are of interest.
For updates metamodel elements, only those tem-
plate instantiations with affected scopes are rele-
vant. Thus, a search of the metamodel is not nec-
essary to handle metamodel changes.

Indeed, the complexity of the metamodel may af-
fect template instantiation and scope sizes because
in metamodels with higher complexity it may re-
quire more complex data extraction expressions to
obtain specific values for variables. However, the
scope of an instantiation is composed of individual
scope elements (a metamodel element and a prop-
erty that is accessed). Those individual scope el-
ements are also stored individually and traces be-
tween each scope element and the template instan-
tiations that rely on it are maintained incremen-
tally by the template engine. Since a single meta-
model element update corresponds to exactly one
scope element (i.e., the scope element that reflects
the metamodel element and its changed property),
finding affected template instantiations does not de-
pend on the complexity of data extraction expres-
sions. Of course, more managed scope elements
may increase the time for finding the single scope
element that corresponds to a metamodel change.
However, the number of overall scope elements was
varied systematically in the case study and no cor-
relation between processing times and the number
of scope elements was observed. Moreover, our pro-
totype uses a unified method for accessing arbitrary
metamodels and models. Thus, we argue that the
relevant factors of variation are considered in our
case study and that our findings can be general-
ized.
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7.4.3. Performed metamodel changes

The changes we performed only involved the re-
moval, addition, and updating of individual refer-
ences and attributes in the UML metamodel. We
did not consider more complex changes such as,
for example, the addition of new classes or the re-
moval of existing ones in the UML metamodel. Nei-
ther did we consider typical metamodel refactor-
ings. However, those metamodel changes can also
be performed through a series of atomic changes
that are equivalent to the ones we used in our case
study. Thus, processing times for complex meta-
model changes and refactorings should depend pri-
marily on the number of atomic changes that is nec-
essary to reach the desired metamodel state.

7.4.4. Repair option generation

For the generation of repairs, we focused on gen-
erating abstract repairs that present to tool users
general guidelines on how to fix an inconsistency
instead of a list of executable (concrete) repair
options. However, the mechanisms employed for
constraint generation are the same for both ab-
stract and concrete repairs. Since we focused on
metamodel-based constraints and did not consider
evironment-based constraints in our case study, the
effects of existing constraints on the number of con-
crete repair options for inconsistencies were not
considered. The analysis of such effects will be the
focus of future investigations. However, previous
research about the effects of constraint dependen-
cies has shown that generally the number of con-
crete repair options in UML models does decrease
significantly when multiple constraints restrict sin-
gle model elements (Nöhrer et al., 2011). More-
over, research has shown that the time needed for
generating repairs is not affected significantly by
the model size or the total number of applied con-
straints (Reder and Egyed, 2012a).

8. Related work

There has been an extensive research activity in
models and their evolution. Here we focused on
those closest to our work and grouped them by
themes.

Metamodel and model (co-)evolution. The
efficient, and ideally automated, (tool-)support for
metamodel evolution and the corresponding co-
evolution of conforming models was identified by

Mens et al. (2005) as one of the major challenges in
software evolution. Since then, various approaches
have been proposed to deal with this challenge. As
co-evolution is a very active field of research and
there has been significant effort made to describe
the field in its entirety by Rose et al. (2012), the
discussion here remains incomplete on purpose and
focuses on those approaches only that are closest to
ours.

Wachsmuth (2007) addresses the issue of meta-
model changes by describing them as transforma-
tional adaptations that are performed stepwise in-
stead of big, manually performed ad hoc changes.
Changes to the metamodel become traceable and
can be qualified according to semantics- or instance-
preservation. He further proposes the use of trans-
formation patterns that are instantiated with meta-
model transformations to create co-transformations
for models. Cicchetti et al. (2009) classify possi-
ble metamodel changes and decompose differences
between model versions into sets of changes of
the same modification-class. They identify pos-
sible dependencies that can occur between dif-
ferent kinds of modifications and provide an ap-
proach to handle these dependencies and to auto-
mate model co-evolution. Herrmannsdoerfer et al.
(2008) also classified coupled metamodel changes
and investigated how far different adaptations are
automatable. COPE (Herrmannsdoerfer et al.,
2009a) handles atomic metamodel changes through
reusable model operations that are executed auto-
matically whenever specific metamodel changes oc-
cur. One aspect that these approaches have in com-
mon is that they are based on decomposing evolu-
tion steps into atomic modification for deriving co-
adaptations. Our approach is also based on atomic
modifications that are handled individually to per-
form necessary adaptations incrementally. How-
ever, we do not try to automate co-evolution of
metamodels and models in the first place. Instead,
the co-evolution of metamodels and constraints en-
ables designers to perform adaptations of a model
with guidance based on specific constraints, includ-
ing constraints that are based on sources other than
the metamodel, and their own domain knowledge.

Wimmer et al. (2010) follow a different approach
by merging two versions of a metamodel to a unified
metamodel and then applying co-evolution rules to
the models . They instantiate new metaclasses and
remove existing elements that are no longer needed.
At first, they encountered problems regarding type-
casts and instantiation so they had to change some
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co-evolution rules. Our prototype can handle the
instantiation of created metaclasses as well as arbi-
trary typecasts of instances.

Rose et al. (2010b) presented Epsilon Flock,
a language which mixes declarative and imper-
ative parts and that is designed specifically for
defining and executing model migration strategies.
Jakumeit et al. (2010) proposed the GrGen.NET
graph rewrite system that enables convenient model
migration based on user-definable rules. Narayanan
et al. (2009) presented the Model Change Lan-
guage (MCL), a language that allows for simply
modeling of model changes. They use the MCL
to define metamodel changes. Existing instance
models are then migrated automatically based on
these changes. Di Ruscio et al. (2011) proposed
EMFMigrate, an approach that lets users define
migration rules that are triggered by, also user-
definable, metamodel changes. In contrast to other
approaches, EMFMigrate supports model migra-
tion of different development artifacts in a uniform
way by relying on migration libraries. Each mi-
gration library is related to a given metamodel.
Our approach of co-evolution through CCP does
also support arbitrary metamodels and handles ar-
bitrary metamodel changes by default. Moreover,
note that those approaches rely on user-defined mi-
gration rules or strategies that have to be writ-
ten manually. Without additional verification and
validation, which is one of the main challenges in
model transformation, writing such rules or strate-
gies manually is error-prone. Furthermore, those
strategies do not nesessarily consider any semantic
or environment-based constraints at all. Our ap-
proach, to the contrary, considers such aspects by
default and does not require any transformations
to be written manually after a metamodel evolu-
tion. Moreover, any proposed repair options are
safe to execute without causing semantics or other
constraints to be violated.

General-purpose transformation approaches such
as ATL (OBEO and INRIA, 2014) or QVT (Ob-
ject Management Group, 2014) are also commonly
used for performing model migration. However,
using these technologies imposes the same draw-
backs as do the migration-specific transformation
approaches mentioned above.

In terms of constraint co-evolution, Büttner et al.
(2005) discuss various metamodel modifications
and how they affected constraints. They describe
how OCL expressions can be transformed to reflect
metamodel evolution. We encountered some of the

issues they identified during the evolution of our
running example, for example the transition from
single-object to collection values and vice versa
because of multiplicity changes which is handled
automatically in our prototype implementation.

Constraint generation. Some approaches have
been proposed to generate constraints automati-
cally. Previously, we have shown that traditional
model transformation approaches can be used to
generate model constraints automatically, which is
called Constraint-driven Modeling (CDM) (Demuth
et al., 2013b). In particular, constraints that ex-
press dependencies between design models can be
generated through model transformation. A sig-
nificant difference between CDM and co-evolution
through CCP is the focus of application. While
the former focuses on consistency issues between
(and within) design models and how constraint gen-
eration can address typical model transformation
issues such as rule scheduling or model merging,
the latter handles co-evolution between metamodels
and models. Moreover, we propose to use constraint
templates and an efficient constraint management
engine in this paper, whereas CDM promotes the
use of standard model transformation techniques.
While model transformations may also be used in
the co-evolution scenario, the presented template-
based approach is highly efficient, as it avoids issues
traditional transformation engines have to address
(e.g., scheduling the execution of transformation
rules), and does not require metamodel designers
to learn a transformation language.

The major difference between our proposed
constraint management and other constraint-
generating approaches such as, for example, the
ones presented by Büttner et al. (2012) or Cabot
et al. (2010) is that the goals of these approaches
are different from ours. Those approaches typically
generate constraints in order to do verification
or validation of transformation rules through
sophisticated reasoning over those rules and target
models (e.g., derive an optimal order of execution
for a set of transformation rules). Thus, they
are designed for different problems (e.g., ensuring
syntactical correctness of target models or checking
validity of transformation rules).

Consistency checking. The concept of in-
cremental consistency checking is getting much
attention because of the increasing popularity of
software product lines and their large and complex
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variability models that make batch-validation
of constraints a task that cannot be performed
on-the-fly anymore (Vierhauser et al., 2010), our
previous work on the Model/Analyzer (Reder and
Egyed, 2010) that we leveraged for our prototype
has also been adapted to product lines to address
this issue. Our work extends the performance
benefits of incremental consistency checking by
the automation of constraint generation that
makes it possible to define templates for constraint
generation once and then let the template engine
do the work of updating the constraints as required.

Repair option generation. Although we
used an adapted version of the approach presented
by Reder and Egyed (2012a) in prototype, any
technology that generates repairs for inconsistent
models, such as those presented by Nentwich et al.
(2003), da Silva et al. (2010), or Xiong et al.
(2009) may be used instead. We opted for the
approach by Reder and Egyed (2012a) because
there was an implementation available that was
built for usage with the employed incremental
consistency checker. Moreover, this approach does
not require fixing-related statements to be added to
the applied OCL constraints, as it is in Xiong et al.
(2009). Neither does it try to execute adaptations
automatically as it is proposed by da Silva et al.
(2010) and Xiong et al. (2009).

Flexible and multilevel modeling. Atkinson
and Kühne (2001) identified several issues in the
field of multilevel (meta)modeling, namely the so-
called shallow instantiation of the UML that was
a motivation for us to rely our implementation on
a data storage that integrates arbitrary metamod-
els and models and provides the flexibility required
for flexible, multilevel modeling. They discussed
different approaches to overcome these issues like
the concept of deep instantiation where instances
can be types at the same time; an approach we
used in our implementation’s underlying represen-
tation of arbitrary metamodels and models. Os-
sher et al. lately presented the BITKit tool (Ossher
et al., 2010) that allows domain-agnostic modeling
and on-the-fly assignment of visual notations to dy-
namically defined domain types. This approach is
also implemented in our tool where the type of a
model element can be changed at any time.

9. Conclusion and future work

In this paper, we have presented the outline of
a novel approach for supporting the co-evolution
of metamodels and models. The paper introduced
the general concept of consistent change propaga-
tion and illustrates how this concept is tailored to
the problem domain of co-evolving models. Our ap-
proach is generic and relies on the detection of in-
consistencies that occur after metamodel evolution.
Those inconsistencies, which can be detected reli-
ably because of incremental updates of constraints
that ensure an up-to-date set of constraints being
used at all times, serve as input for a reasoning
mechanism that provides as output a set of possi-
ble model adaptations for repairing – that is, co-
evolving – an affected model. The benefits of us-
ing CCP over traditional approaches – for example,
the avoidance of unintended model adaptations pro-
duced by fully automatic approaches – were illus-
trated by a running example. The prototype imple-
mentation demonstrates that the approach is feasi-
ble and good performance results with realistic case
studies suggest that it also works efficiently.

For future work we plan to apply the generic con-
cept of CCP to other problems such as versioning
systems in which inconsistencies are introduced and
have to be resolved frequently. Moreover, we plan
to conduct experiments that evaluate in detail the
benefits of our approach from a designer’s perspec-
tive.
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